Published in

Cell Press, Molecular Cell, 5(46), p. 691-704, 2012

DOI: 10.1016/j.molcel.2012.05.028

Links

Tools

Export citation

Search in Google Scholar

Hierarchical modularity and the evolution of genetic interactomes across species

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

To date, cross-species comparisons of genetic interactomes have been restricted to small or functionally related gene sets, limiting our ability to infer evolutionary trends. To facilitate a more comprehensive analysis, we constructed a genome-scale epistasis map (E-MAP) for the fission yeast Schizosaccharomyces pombe, providing phenotypic signatures for ~60% of the non-essential genome. Using these signatures, we generated a catalogue of 297 functional modules, and assigned function to 144 previously uncharacterised genes, including mRNA splicing and DNA damage checkpoint factors. Comparison with an integrated genetic interactome from the budding yeast Saccharomyces cerevisiae revealed a hierarchical model for the evolution of genetic interactions, with conservation highest within protein complexes, lower within biological processes, and lowest between distinct biological processes. Despite the large evolutionary distance and extensive rewiring of individual interactions, both networks retain conserved features and display similar levels of functional cross-talk between biological processes, suggesting general design principles of genetic interactomes.