Published in

Oxford University Press, Endocrinology, 7(153), p. 3357-3367, 2012

DOI: 10.1210/en.2012-1121

Links

Tools

Export citation

Search in Google Scholar

Estrogen-Induced Memory Enhancements Are Blocked by Acute Bisphenol A in Adult Female Rats: Role of Dendritic Spines

Journal article published in 2012 by T. Inagaki, M. Frankfurt ORCID, V. Luine
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

Acute effects of bisphenol (BPA), an environmental chemical, on estradiol (17α or β-E2)-dependent recognition memory and dendritic spines in the medial prefrontal cortex and hippocampus were investigated in adult female rats. Ovariectomized rats received BPA 30 min before or immediately after a sample trial (viewing objects), and retention trials were performed 4 h later. Retention trials tested discrimination between old and new objects (visual memory) or locations (place memory). When given immediately after the sample trial, BPA, 1–400 μg/kg, did not alter recognition memory, but 1 and 40 μg/kg BPA, respectively, blocked 17β-E2-dependent increases in place and visual memory. When ovariectomized rats were tested with 17α-E2, 1 μg/kg BPA blocked place memory, but up to 40 μg did not block visual memory. BPA, given to cycling rats at 40 μg/kg, blocked visual, but not place, memory during proestrus when 2 h intertrial delays were given. Spine density was assessed at times of memory consolidation (30 min) and retention (4 h) after 17β-E2 or BPA + 17β-E2. In prefrontal cortex, BPA did not alter E2-dependent increases. In the hippocampus, BPA blocked E2 increases in basal spines at 4 h and was additive with E2 at 30 min. Thus, these novel data show that doses of BPA, below the current Environmental Protection Agency safe limit of 50 μg/kg, rapidly alter neural functions dependent on E2 in adult female rats.