Published in

Royal Society of Chemistry, Chemical Science, 3(6), p. 1728-1734, 2015

DOI: 10.1039/c4sc03935a

Links

Tools

Export citation

Search in Google Scholar

CIT-7, a crystalline, molecular sieve with pores bounded by 8 and 10-membered rings

Journal article published in 2015 by Joel E. Schmidt ORCID, Dan Xie, Thomas Rea, Mark E. Davis
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

A new crystalline molecular sieve, denoted CIT-7, is synthesized using an imidazolium-based diquaternary organic structure directing agent (OSDA). The framework structure is determined from a combination of rotation electron diffraction and synchrotron X-ray powder diffraction data. The structure has 10 crystallographically unique tetrahedral atoms (T-atoms) in the unit cell, and can be described as an ordered arrangement of the [4^(2)5^(4)6^(2)] mtw building unit and a previously unreported [4^(4)5^(2)] building unit. The framework contains a 2-dimensional pore system that is bounded by 10 T-atom rings (10-ring, 5.1 Å × 6.2 Å opening) that are connected with oval 8-rings (2.9 Å × 5.5 Å opening) through medium-sized cavities (~7.9 Å) at the channel intersections. CIT-7 can be synthesized over a broad range of compositions including pure-silica and heteroatom, e.g., aluminosilicate and titanosilicate, containing variants.