Published in

Wiley, Developmental Dynamics, p. NA-NA, 2010

DOI: 10.1002/dvdy.22271

Links

Tools

Export citation

Search in Google Scholar

Spermatogenesis-defective (spe) Mutants of the Nematode Caenorhabditis elegans Provide Clues to Solve the Puzzle of Male Germline Functions during Reproduction

Journal article published in 2010 by Hitoshi Nishimura ORCID, Steven W. L’Hernault
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

In most species, each sex produces gametes, usually either sperm or oocytes, from its germline during gametogenesis. The sperm and oocyte subsequently fuse together during fertilization to create the next generation. This review focuses on spermatogenesis and the roles of sperm during fertilization in the nematode Caenorhabditis elegans, where suitable mutants are readily obtained. So far, 186 mutants defective in the C. elegans male germline functions have been isolated, and many of these mutations are alleles for one of the approximately 60 spermatogenesis-defective (spe) genes. Many cloned spe genes are expressed specifically in the male germline, where they play roles during spermatogenesis (spermatid production), spermiogenesis (spermatid activation into spermatozoa), and/or fertilization. Moreover, several spe genes are orthologs of mammalian genes, suggesting that the reproductive processes of the C. elegans and the mammalian male germlines might share common pathways at the molecular level.