Published in

Elsevier, Mechatronics, 2(23), p. 197-203

DOI: 10.1016/j.mechatronics.2012.08.003

Links

Tools

Export citation

Search in Google Scholar

Design study on a magnetic gravity compensator with unequal magnet arrays

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Passive magnetic gravity compensation may be a very feasible alternative to the more commonly used mechanical or pneumatic solutions for vibration isolation systems. This paper presents a study on the optimal design of an ironless magnetic spring, or gravity compensator, with a horizontal airgap and unequally sized magnet arrays. Its envisaged application is an electromagnetic vibration isolator that demands a high force level, combined with low spring stiffness, which yields a low resonance frequency. Two optimization methods are used to achieve these properties and their results are compared. This study aims to provide more insight in the limits of the proposed topology on the achievable vibration isolation performance of permanent-magnet based springs as well as the feasibility of the modeling and optimization tools. A gravity compensator has been realized in a test setup that shows the feasibility of the chosen modeling technique and of magnetic gravity compensation.