Dissemin is shutting down on January 1st, 2025

Published in

American Association for the Advancement of Science, Science Signaling, 106(3), 2010

DOI: 10.1126/scisignal.2000514

Links

Tools

Export citation

Search in Google Scholar

A Crucial Role for RACK1 in the Regulation of Glucose-Stimulated IRE1α Activation in Pancreatic β Cells

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Autophosphorylation of inositol-requiring enzyme 1alpha (IRE1alpha) is required for its activation, which elicits the cellular unfolded protein response (UPR) and is functionally connected with insulin biosynthesis in pancreatic beta cells. We found that the scaffold protein receptor for activated C-kinase 1 (RACK1) interacted with IRE1alpha in a glucose-stimulated or endoplasmic reticulum (ER) stress-responsive manner in pancreatic beta cells and primary islets. RACK1 mediated the glucose-inducible assembly of a complex containing IRE1alpha, RACK1, and protein phosphatase 2A (PP2A) to promote dephosphorylation of IRE1alpha by PP2A, thereby inhibiting glucose-stimulated IRE1alpha activation and attenuating IRE1alpha-dependent increases in insulin production. Moreover, IRE1alpha activation was increased and RACK1 abundance was decreased in a mouse model of diabetes. Thus, our findings demonstrate that RACK1 functions as a key component in regulating the IRE1alpha signaling pathway in pancreatic beta cells.