Published in

Elsevier, Journal of Biological Chemistry, 29(283), p. 19927-19935, 2008

DOI: 10.1074/jbc.m803625200

Links

Tools

Export citation

Search in Google Scholar

Electrophilic Cyclopentenone Neuroprostanes Are Anti-inflammatory Mediators Formed from the Peroxidation of the ω-3 Polyunsaturated Fatty Acid Docosahexaenoic Acid*

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

The ω-3 polyunsaturated fatty acid docosahexaenoic acid (DHA) possesses potent anti-inflammatory properties and has shown therapeutic benefit in numerous inflammatory diseases. However, the molecular mechanisms of these anti-inflammatory properties are poorly understood. DHA is highly susceptible to peroxidation, which yields an array of potentially bioactive lipid species. One class of compounds are cyclopentenone neuroprostanes (A4/J4-NPs), which are highly reactive and similar in structure to anti-inflammatory cyclopentenone prostaglandins. Here we show that a synthetic A4/J4-NP, 14-A4-NP (A4-NP), potently suppresses lipopolysaccharideinduced expression of inducible nitric-oxide synthase and cyclooxygenase-2 in macrophages. Furthermore, A4-NP blocks lipopolysaccharide-induced NF-κB activation via inhibition of Iκ kinase-mediated phosphorylation of IκBα. Mutation on Iκ kinase β cysteine 179 markedly diminishes the effect of A4-NP, suggesting that A4-NP acts via thiol modification at this residue. Accordingly, the effects of A4-NP are independent of peroxisome proliferator-activated receptor-γ and are dependent on an intact reactive cyclopentenone ring. Interestingly, free radical-mediated oxidation of DHA greatly enhances its anti-inflammatory potency, an effect that closely parallels the formation of A4/J4-NPs. Furthermore, chemical reduction or conjugation to glutathione, both of which eliminate the bioactivity of A4-NP, also abrogate the anti-inflammatory effects of oxidized DHA. Thus, we have demonstrated that A4/J4-NPs, formed via the oxidation of DHA, are potent inhibitors of NF-κB signaling and may contribute to the anti-inflammatory actions of DHA. These findings have implications for understanding the anti-inflammatory properties of ω-3 fatty acids, and elucidate novel interactions between lipid peroxidation products and inflammation.