Published in

Cell Press, Cell Metabolism, 2(7), p. 135-147, 2008

DOI: 10.1016/j.cmet.2007.12.003

Links

Tools

Export citation

Search in Google Scholar

Metabolomics Reveals that Hepatic Stearoyl-CoA Desaturase 1 Downregulation Exacerbates Inflammation and Acute Colitis

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

To investigate the pathogenic mechanism of ulcerative colitis, a dextran sulfate sodium (DSS)-induced acute colitis model was examined by serum metabolomic analysis. Higher levels of stearoyl lysophosphatidylcholine and lower levels of oleoyl lysophosphatidylcholine in DSS-treated mice compared to controls led to the identification of DSS-elicited inhibition of stearoyl-CoA desaturase 1 (SCD1) expression in liver. This decrease occurred prior to the symptoms of acute colitis and was well correlated with elevated expression of proinflammatory cytokines. Furthermore, Citrobacter rodentium-induced colitis and lipopolysaccharide treatment also suppressed SCD1 expression in liver. Scd1 null mice were more susceptible to DSS treatment than wild-type mice, while oleic acid feeding and in vivo SCD1 rescue with SCD1 adenovirus alleviated the DSS-induced phenotype. This study reveals that inhibition of SCD1-mediated oleic acid biogenesis exacerbates proinflammatory responses to exogenous challenges, suggesting that SCD1 and its related lipid species may serve as potential targets for intervention or treatment of inflammatory diseases.