American Institute of Physics, Journal of Applied Physics, 12(106), p. 123531
DOI: 10.1063/1.3273492
Full text: Unavailable
We investigate the effects of doping and grading slope on the surface and structure of linearly alloy graded InGaAs buffers. It is found that the Be doping can improve material properties, resulting in smaller surface roughness and a lower threading dislocation density, while the Si doping has an opposite effect. The effect is strongly dependent on the grading slope. A moderate In grading slope is preferable for the strain relaxation and the minimization of the negative effect of Si doping. Physical mechanisms are proposed to explain the experimental observations. Since doping is essential for many types of optoelectronic devices, these results are valuable for improving the material properties and performance of metamorphic devices.