Published in

Springer Verlag, Journal of Solid State Electrochemistry, 9(19), p. 2859-2868

DOI: 10.1007/s10008-015-2900-1

Links

Tools

Export citation

Search in Google Scholar

Electrochemical deposition of gold on indium zirconate (InZrOx with In/Zr atomic ratio 1.0) for high temperature automobile exhaust gas sensors

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Automobile exhaust gas emissions are causing serious damage to urban air quality in and around major cities of the world, which demands continuous monitoring of exhaust emissions. The chief components of automobile exhaust include carbon monoxide (CO), nitrogen oxides (NOx), and hydrocarbons. Indium zirconate (InZrOx) and gold/indium zirconate (Au/InZrOx) composite nanopowders are believed to be interesting materials to detect these substances. To this end, characterization and gas sensing properties of InZrOx and Au/InZrOx composite nanopowders are discussed. InZrOx nanoparticles with In/Zr atomic ratio of 1.00 (±0.05) are synthesized via pH-controlled co-precipitation of In and Zr salts in aqueous ammonia. Gold (Au) nanoparticles are subsequently deposited on InZrOx using an in situ sacrificial Au electrolysis procedure. The products are characterized by scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). The gas sensing performance of Au/InZrOx composite nanopowder is studied by depositing a thick powder film on interdigitated electrode structures patterned on SiC substrate to facilitate high temperature operation. The resistivity of the Au/InZrOx layer is the sensor signal, and the sensors could be operated at 500–600 °C, which is a suitable temperature range for engine exhaust measurements. The control sensing measurements reveal that Au/InZrOx composite nanopowder exhibits higher response towards 2–20 % O2 gas as compared to pristine InZrOx nanoparticles. Further studies show that when applied to exhaust gases such as CO and nitric oxide (NO), the response of Au/InZrOx sensors is significantly higher towards NO in this temperature range. Thus, sensor performance characteristics of Au/InZrOx composite nanopowder are promising in terms of their applications in automobile exhaust emission control.