Published in

Springer Verlag, International Journal of Advanced Manufacturing Technology, 1-4(80), p. 401-409

DOI: 10.1007/s00170-015-6959-8

Links

Tools

Export citation

Search in Google Scholar

Numerical and experimental analysis of the automated demolding process for PDMS microfluidic devices with high-aspect ratio micropillars

Journal article published in 2015 by Chih-Hsing Liu, Wenjie Chen, Wen Su, Chen-Nan Sun ORCID
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

This study aims to investigate two peel demolding schemes through numerical simulations and experimental studies in order to improve the yield rate of the automated system for demolding of the polydimethylsiloxane (PDMS) micropillars with aspect ratio of 6. Numerical models based on the explicit dynamic finite element analysis by using LS-DYNA are developed to identify an optimal demolding scheme which can minimize the maximum stress of microstructures during demolding. A scale-up modeling approach is proposed to increase the numerical time-step for microscale problems in order to reduce the computational time. The experimental tests are also carried out which agree with the findings from numerical simulations. From this study, the roller-based demolding system is identified as the optimal approach in our analysis cases which can minimize the distortion and collapse of micropillars. The yield rate of the roller-based demolding system in our experimental study can be up to 99 %.