Published in

Wiley, Molecular Microbiology, 1(74), p. 159-174, 2009

DOI: 10.1111/j.1365-2958.2009.06858.x

Links

Tools

Export citation

Search in Google Scholar

Contribution of AmyA, an extracellular α-glucan degrading enzyme, to group A streptococcal host-pathogen interaction

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

alpha-Glucans such as starch and glycogen are abundant in the human oropharynx, the main site of group A Streptococcus (GAS) infection. However, the role in pathogenesis of GAS extracellular alpha-glucan binding and degrading enzymes is unknown. The serotype M1 GAS genome encodes two extracellular proteins putatively involved in alpha-glucan binding and degradation; pulA encodes a cell wall anchored pullulanase and amyA encodes a freely secreted putative cyclomaltodextrin alpha-glucanotransferase. Genetic inactivation of amyA, but not pulA, abolished GAS alpha-glucan degradation. The DeltaamyA strain had a slower rate of translocation across human pharyngeal epithelial cells. Consistent with this finding, the DeltaamyA strain was less virulent following mouse mucosal challenge. Recombinant AmyA degraded alpha-glucans into beta-cyclomaltodextrins that reduced pharyngeal cell transepithelial resistance, providing a physiologic explanation for the observed transepithelial migration phenotype. Higher amyA transcript levels were present in serotype M1 GAS strains causing invasive infection compared with strains causing pharyngitis. GAS proliferation in a defined alpha-glucan-containing medium was dependent on the presence of human salivary alpha-amylase. These data delineate the molecular mechanisms by which alpha-glucan degradation contributes to GAS host-pathogen interaction, including how GAS uses human salivary alpha-amylase for its own metabolic benefit.