Dissemin is shutting down on January 1st, 2025

Published in

Public Library of Science, PLoS Genetics, 8(11), p. e1005370, 2015

DOI: 10.1371/journal.pgen.1005370

Links

Tools

Export citation

Search in Google Scholar

The Spalt Transcription Factors Generate the Transcriptional Landscape of the Drosophila melanogaster Wing Pouch Central Region

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

The Drosophila genes spalt major (salm) and spalt-related (salr) encode Zn-finger transcription factors regulated by the Decapentaplegic (Dpp) signalling pathway in the wing imaginal disc. The function of these genes is required for cell survival and proliferation in the central region of the wing disc, and also for vein patterning in the lateral regions. The identification of direct Salm and Salr target genes, and the analysis of their functions, are critical steps towards understanding the genetic control of growth and patterning of the Drosophila wing imaginal disc by the Dpp pathway. To identify candidate Salm/Salr target genes, we have compared the expression profile of salm/salr knockdown wing discs with control discs in microarray experiments. We studied by in situ hybridization the expression pattern of the genes whose mRNA levels varied significantly, and uncovered a complex transcription landscape regulated by the Spalt proteins in the wing disc. Interestingly, candidate Salm/Salr targets include genes which expression is turned off and genes which expression is positively regulated by Salm/Salr. Furthermore, loss-of-function phenotypic analysis of these genes indicates, for a fraction of them, a requirement for wing growth and patterning. The identification and analysis of candidate Salm/Salr target genes opens a new avenue to reconstruct the genetic structure of the wing, linking the activity of the Dpp pathway to the development of this epithelial tissue.