Dissemin is shutting down on January 1st, 2025

Published in

Public Library of Science, PLoS ONE, 8(10), p. e0134829, 2015

DOI: 10.1371/journal.pone.0134829

Links

Tools

Export citation

Search in Google Scholar

Karyotype Reorganization in the Hokou Gecko (Gekko hokouensis, Gekkonidae): The Process of Microchromosome Disappearance in Gekkota

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

The Hokou gecko (Gekko hokouensis: Gekkonidae, Gekkota, Squamata) has the chromosome number 2n = 38, with no microchromosomes. For molecular cytogenetic characterization of the gekkotan karyotype, we constructed a cytogenetic map for G. hokouensis, which retains the ancestral karyotype of Gekkota, with 86 functional genes, and compared it with cytogenetic maps for four Toxicofera species that have many microchromosomes (Elaphe quadrivirgata, Varanus salvator macromaculatus, Leiolepis reevesii rubritaeniata, and Anolis carolinensis) and that for a lacertid species (Lacerta agilis) with only one pair of autosomal microchromosomes. Ten pairs of G. hokouensis chromosomes [GHO1, 2, 3, Z(4), 6, 7, 8, 13, 14, and 15] showed highly conserved linkage homology with macrochromosomes and/or macrochromosome arms of the four Toxicofera species and corresponded to eight L. agilis macrochromosomes (LAG). However, GHO5, GHO9, GHO10, GHO11, and LAG6 were composed of chromosome segments that have a homology with Toxicofera micro-chromosomes, and no homology was found in the chromosomes between G. hokouensis and L. agilis. These results suggest that repeated fusions of microchromosomes may have occurred independently in each lineage of Gekkota and Lacertidae, leading to the disappearance of microchromosomes and appearance of small-sized macrochromosomes.