Dissemin is shutting down on January 1st, 2025

Published in

American Institute of Physics, Journal of Applied Physics, 5(108), p. 054303

DOI: 10.1063/1.3481004

Links

Tools

Export citation

Search in Google Scholar

Self-repairing in single-walled carbon nanotubes by heat treatment

Journal article published in 2010 by Jin-Wu Jiang, Jian-Sheng Wang ORCID
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

Structure transformation by heat treatment in single-walled carbon nanotubes (SWCNT) is investigated using molecular dynamics simulation. The critical temperature for the collapse of pure SWCNT is as high as 4655 K due to strong covalent carbon-carbon bonding. Above 2000 K, the cross section of SWCNT changes from circle to ellipse. The self-repairing capability is then investigated and two efficient processes are observed for the SWCNT to repair themselves. (1) In the first mechanism, vacancy defects aggregate to form a bigger hole, and a bottleneck junction is constructed nearby. (2) In the second mechanism, a local curvature is generated around the isolate vacancy to smooth the SWCNT. Benefit from the powerful self-repairing capability, defective SWCNT can seek a stable configuration at high temperatures; thus the critical temperature for collapse is insensitive to the vacancy defect density. ; Comment: accepted by Journal of Applied Physics