Dissemin is shutting down on January 1st, 2025

Published in

Mary Ann Liebert, Tissue Engineering Part C: Methods, 6(16), p. 1621-1628, 2010

DOI: 10.1089/ten.tec.2010.0146

Links

Tools

Export citation

Search in Google Scholar

Long-Term Spatially Defined Coculture Within Three-Dimensional Photopatterned Hydrogels

Journal article published in 2010 by Taymour M. Hammoudi, Hang Lu ORCID, Johnna S. Temenoff
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Spatially controlled coculture in three-dimensional environments that appropriately mimic in vivo tissue architecture is a highly desirable goal in basic scientific studies of stem cell physiological processes (e.g., proliferation, matrix production, and tissue repair) and in enhancing the development of novel stem-cell-based clinical therapies for a variety of ailments. This study describes a novel fabrication system for photopatterning and assembling cell-laden oligo(polyethylene glycol)-fumarate:poly(ethylene glycol)-diacrylate hydrogels with high spatial fidelity and thickness using a controlled, inert nitrogen environment without the need for expensive precision equipment. Cross-linking was performed using Irgacure-2959 photoinitiator and 365-nm light (∼7 mW/cm²) to form gels ranging from 0.9 to 3 mm in width. Employing a nitrogen environment increased gel thickness up to 240%, generating gels > 1 mm thick before swelling. This technique was further applied for spatially controlled patterning of primary tendon/ligament fibroblasts and marrow stromal cells in a single 1.5-mm-thick laminated hydrogel construct. Cells encapsulated using this technique maintained viability over 14 days in culture. This system potentially enables better understanding of paracrine effects on a range of stem cell functions and therefore may be useful as an in vitro model system for a wide array of regenerative medicine applications.