Published in

American Society for Microbiology, Applied and Environmental Microbiology, 1(73), p. 289-294, 2007

DOI: 10.1128/aem.01952-06

American Society for Microbiology, Applied and Environmental Microbiology, 6(74), p. 1960-1960, 2008

DOI: 10.1128/aem.00058-08

Links

Tools

Export citation

Search in Google Scholar

Localization of Functional Polypeptides in Bacterial Inclusion Bodies

Journal article published in 2006 by Elena Garcia-Fruitos ORCID, Anna Aris, Antonio Villaverde
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

ABSTRACT Bacterial inclusion bodies, while showing intriguing amyloid-like features, such as a β-sheet-based intermolecular organization, binding to amyloid-tropic dyes, and origin in a sequence-selective deposition process, hold an important amount of native-like secondary structure and significant amounts of functional polypeptides. The aggregation mechanics supporting the occurrence of both misfolded and properly folded protein is controversial. Single polypeptide chains might contain both misfolded stretches driving aggregation and properly folded protein domains that, if embracing the active site, would account for the biological activities displayed by inclusion bodies. Alternatively, soluble, functional polypeptides could be surface adsorbed by interactions weaker than those driving the formation of the intermolecular β-sheet architecture. To explore whether the fraction of properly folded active protein is a natural component or rather a mere contaminant of these aggregates, we have explored their localization by image analysis of inclusion bodies formed by green fluorescent protein. Since the fluorescence distribution is not homogeneous and the core of inclusion bodies is particularly rich in active protein forms, such protein species cannot be passively trapped components and their occurrence might be linked to the reconstruction dynamics steadily endured in vivo by such bacterial aggregates. Intriguingly, even functional protein species in inclusion bodies are not excluded from the interface with the solvent, probably because of the porous structure of these particular protein aggregates.