Published in

National Academy of Sciences, Proceedings of the National Academy of Sciences, 1(105), p. 264-269, 2008

DOI: 10.1073/pnas.0710601105

Links

Tools

Export citation

Search in Google Scholar

Mycobacterium tuberculosis Rv2224c modulates innate immune responses

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Tuberculosis remains a major global health problem that kills up to 2 million people annually. Central to the success of Mycobacterium tuberculosis ( Mtb ) as a pathogen is its ability to evade host immunity and to establish a chronic infection. Although its primary intracellular niche is within macrophages, the underlying molecular mechanisms are poorly understood. Here we show that Rv2224c, a cell envelope-associated predicted protease, is critical for Mtb virulence. Disruption of Rv2224c led to prolonged survival of infected mice and highly reduced lung pathology. Absence of Rv2224c enhanced host innate immune responses, compromised the intracellular survival of Mtb in macrophages, and increased its susceptibility to lysozyme. We provide insights into the molecular basis for Rv2224c function by showing that Rv2224c activity promotes processing and extracellular release of the Mtb protein, GroEL2. Inhibition of Rv2224c and its targets offers opportunities for therapeutic interventions and immune-modulatory strategies.