Published in

EMBO Press, The EMBO Journal, 14(21), p. 3794-3803

DOI: 10.1093/emboj/cdf359

Links

Tools

Export citation

Search in Google Scholar

Lariat formation and a hydrolytic pathway in plant chloroplast group II intron splicing

Journal article published in 2002 by Jörg Vogel ORCID, Thomas Börner
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Lariat formation has been studied intensively only with a few self-splicing group II introns, and little is known about how the numerous diverse introns in plant organelles are excised. Several of these introns have branch-points that are not a single bulge but are adjoined by A:A, A:C, A:G and G:G pairs. Using a highly sensitive in vivo approach, we demonstrate that all but one of the barley chloroplast introns splice via the common pathway that produces a branched product. RNA editing does not improve domain 5 and 6 structures of these introns. The conserved branch-point in tobacco rpl16 is chosen even if an adjacent unpaired adenosine is available, suggesting that spatial arrangements in domain 6 determine correct branch-point selection. Lariats were not detected for the chloroplast trnV intron, which lacks an unpaired adenosine in domain 6. Instead, this intron is released as linear molecules that undergo further polyadenylation. trnV, which is conserved throughout plant evolution, constitutes the first example of naturally occurring hydrolytic group II intron splicing in vivo.