Published in

American Society for Microbiology, Journal of Virology, 10(74), p. 4672-4678, 2000

DOI: 10.1128/jvi.74.10.4672-4678.2000

American Society for Microbiology, Journal of Virology, 10(74), p. 4672-4678, 2000

DOI: 10.1128/.74.10.4672-4678.2000

Links

Tools

Export citation

Search in Google Scholar

Octamerization Enables Soluble CD46 Receptor To Neutralize Measles Virus In Vitro and In Vivo

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

ABSTRACT A chimeric fusion protein encompassing the CD46 ectodomain linked to the C-terminal part of the C4b binding protein (C4bp) α chain (sCD46-C4bpα) was produced in eukaryotic cells. This protein, secreted as a disulfide-linked homo-octamer, was recognized by a panel of anti-CD46 antibodies with varying avidities. Unlike monomeric sCD46, the octameric sCD46-C4bpα protein was devoid of complement regulatory activity. However, sCD46-C4bpα was able to bind to the measles virus hemagglutinin protein expressed on murine cells with a higher avidity than soluble monomeric sCD46. Moreover, the octameric sCD46-C4bpα protein was significantly more efficient than monomeric sCD46 in inhibiting virus binding to CD46, in blocking virus induced cell-cell fusion, and in neutralizing measles virus in vitro. In addition, the octameric sCD46-C4bpα protein, but not the monomeric sCD46, fully protected CD46 transgenic mice against a lethal intracranial measles virus challenge.