Published in

American Association for Cancer Research, Molecular Cancer Therapeutics, 12(9), p. 3164-3174, 2010

DOI: 10.1158/1535-7163.mct-10-0078

Links

Tools

Export citation

Search in Google Scholar

Antagonism of Cytotoxic Chemotherapy in Neuroblastoma Cell Lines by 13-cis-Retinoic Acid Is Mediated by the Antiapoptotic Bcl-2 Family Proteins

Journal article published in 2010 by Michael D. Hadjidaniel, C. Patrick Reynolds ORCID
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Abstract 13-cis-Retinoic acid (13-cis-RA) is given at completion of cytotoxic therapy to control minimal residual disease in neuroblastoma. We investigated the effect of combining 13-cis-RA with cytotoxic agents employed in neuroblastoma therapy using a panel of 6 neuroblastoma cell lines. The effect of 13-cis-RA on the mitochondrial apoptotic pathway was studied by flow cytometry, cytotoxicity by DIMSCAN, and protein expression by immunoblotting. Pretreatment and direct combination of 13-cis-RA with etoposide, topotecan, cisplatin, melphalan, or doxorubicin markedly antagonized the cytotoxicity of those agents in 4 out of 6 tested neuroblastoma cell lines, increasing fractional cell survival by 1 to 3 logs. The inhibitory concentration of drugs (IC99) increased from clinically achievable levels to nonachievable levels, greater than 5-fold (cisplatin) to greater than 7-fold (etoposide). In SMS-KNCR neuroblastoma cells, 13-cis-RA upregulated expression of Bcl-2 and Bcl-xL RNA and protein, and this was associated with protection from etoposide-mediated apoptosis at the mitochondrial level. A small molecule inhibitor of the Bcl-2 family of proteins (ABT-737) restored mitochondrial membrane potential loss and apoptosis in response to cytotoxic agents in 13-cis-RA treated cells. Prior selection for resistance to RA did not diminish the response to cytotoxic treatment. Thus, combining 13-cis-RA with cytotoxic chemotherapy significantly reduced the cytotoxicity for neuroblastoma in vitro, mediated at least in part via the antiapoptotic Bcl-2 family of proteins. Mol Cancer Ther; 9(12); 3164–74. ©2010 AACR.