Dissemin is shutting down on January 1st, 2025

Published in

American Association for Cancer Research, Cancer Epidemiology, Biomarkers & Prevention, 2(24), p. 350-360, 2015

DOI: 10.1158/1055-9965.epi-14-0669

Links

Tools

Export citation

Search in Google Scholar

Solid Tumors of Childhood Display Specific Serum microRNA Profiles

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Abstract Background: Serum biomarkers for diagnosis and risk stratification of childhood solid tumors would improve the accuracy/timeliness of diagnosis and reduce the need for invasive biopsies. We hypothesized that differential expression and/or release of microRNAs (miRNAs) by such tumors may be detected as altered serum miRNA profiles. Methods: We undertook global quantitative reverse transcription PCR (qRT-PCR) miRNA profiling (n = 741) on RNA from 53 serum samples, representing 33 diagnostic cases of common childhood cancers plus 20 controls. Technical confirmation was performed in a subset of 21 cases, plus four independent samples. Results: We incorporated robust quality control steps for RNA extraction, qRT-PCR efficiency and hemolysis quantification. We evaluated multiple methods to normalize global profiling data and identified the ‘global mean’ approach as optimal. We generated a panel of six miRNAs that were most stable in pediatric serum samples and therefore most suitable for normalization of targeted miRNA qRT-PCR data. Tumor-specific serum miRNA profiles were identified for each tumor type and selected miRNAs underwent confirmatory testing. We identified a panel of miRNAs (miR-124-3p/miR-9-3p/miR-218-5p/miR-490-5p/miR-1538) of potential importance in the clinical management of neuroblastoma, as they were consistently highly overexpressed in MYCN-amplified high-risk cases (MYCN-NB). We also derived candidate miRNA panels for noninvasive differential diagnosis of a liver mass (hepatoblastoma vs. combined MYCN-NB/NB), an abdominal mass (Wilms tumor vs. combined MYCN-NB/NB), and sarcoma subtypes. Conclusions: This study describes a pipeline for robust diagnostic serum miRNA profiling in childhood solid tumors, and has identified candidate miRNA profiles for prospective testing. Impact: We propose a new noninvasive method with the potential to diagnose childhood solid tumors. Cancer Epidemiol Biomarkers Prev; 24(2); 350–60. ©2014 AACR.