Published in

Oxford University Press, Cerebral Cortex, 11(24), p. 2951-2963, 2013

DOI: 10.1093/cercor/bht149

Links

Tools

Export citation

Search in Google Scholar

Smad4 and Trim33/Tif1γ redundantly regulate neural stem cells in the developing cortex

Journal article published in 2013 by Sven Falk, Esméé Joosten, Vesa Kaartinen ORCID, Lukas Sommer
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

During central nervous system (CNS) development, proliferation and differentiation of neural stem cells (NSCs) have to be regulated in a spatio-temporal fashion. Here, we report different branches of the transforming growth factor β (TGFβ) signaling pathway to be required for the brain area-specific control of NSCs. In the midbrain, canonical TGFβ signaling via Smad4 regulates the balance between proliferation and differentiation of NSCs. Accordingly, Smad4 deletion resulted in horizontal expansion of NSCs due to increased proliferation, decreased differentiation, and decreased cell cycle exit. In the developing cortex, however, ablation of Smad4 alone did not have any effect on proliferation and differentiation of NSCs. In contrast, concomitant mutation of both Smad4 and Trim33 led to an increase in proliferative cells in the ventricular zone due to decreased cell cycle exit, revealing a functional redundancy of Smad4 and Trim33. Furthermore, in Smad4-Trim33 double mutant embryos, cortical NSCs generated an excess of deep layer neurons concurrent with a delayed and reduced production of upper layer neurons and, in addition, failed to undergo the neurogenic to gliogenic switch at the right developmental stage. Thus, our data disclose that in different regions of the developing CNS different aspects of the TGFβ signaling pathway are required to ensure proper development.