Published in

De Gruyter Open, Open Physics, 5(10), 2012

DOI: 10.2478/s11534-012-0131-y

Links

Tools

Export citation

Search in Google Scholar

Variational calculations for the hydrogen-antihydrogen system with a mass-scaled Born-Oppenheimer potential

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

The problem of proton-antiproton motion in the ${\rm H}$--${\rm \bar{H}}$ system is investigated by means of the variational method. We introduce a modified nuclear interaction through mass-scaling of the Born-Oppenheimer potential. This improved treatment of the interaction includes the nondivergent part of the otherwise divergent adiabatic correction and shows the correct threshold behavior. Using this potential we calculate the vibrational energy levels with angular momentum 0 and 1 and the corresponding nuclear wave functions, as well as the S-wave scattering length. We obtain a full set of all bound states together with a large number of discretized continuum states that might be utilized in variational four-body calculations. The results of our calculations gives an indication of resonance states in the hydrogen-antihydrogen system.