Published in

Taylor and Francis Group, Cell Adhesion and Migration, 4(3), p. 319-321, 2009

DOI: 10.4161/cam.3.4.9951

Links

Tools

Export citation

Search in Google Scholar

Cdk5

Journal article published in 2009 by Tobias Albert, Monika Saxena, Vincent Lelievre ORCID
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Neurogenesis takes place in the mammalian hippocampus throughout the whole life and deficient adult hippocampal neurogenesis has been related to neurological conditions like Alzheimer disease (AD), Parkinson disease (PD) and epilepsy. The molecular mechanisms by which immature neurons and their extending neurites find their appropriate position and target area remain largely unknown. Recent work by Jessberger et al.1 examines the role of Cdk5 in normal adult neurogenesis by a retroviral knock-down approach. Cdk5 is shown to be implicated in the migration of newborn neurons into the granule cell layer (GCL), as well as, in correct targeting of dendrites from newborn granule cells (GC) into the molecular layer (ML) of the dentate gyrus (DG). The study also shows that aberrant dendrites still seem to become synaptically integrated into the existing circuitry thereby suggesting a mechanistic dissociation between accurate dendritic targeting and subsequent synapse formation. The finding of Cdk5 guiding this integration of new born neurons at the physiologically appropriate place is an important step towards understanding adult neurogenesis that may help to overcome problems with the restorative use of neural stem cells in present grafting approaches in neurological diseases.