Published in

American Association of Immunologists, The Journal of Immunology, 7(195), p. 3119-3128, 2015

DOI: 10.4049/jimmunol.1402670

Links

Tools

Export citation

Search in Google Scholar

Negative Regulation of Memory Phenotype CD8 T Cell Conversion by Adhesion and Degranulation-Promoting Adapter Protein

Journal article published in 2015 by Jessica K. Fiege, Brandon J. Burbach ORCID, Yoji Shimizu ORCID
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Abstract The maintenance of T cell repertoire diversity involves the entry of newly developed T cells, as well as the maintenance of memory T cells generated from previous infections. This balance depends on competition for a limited amount of homeostatic cytokines and interaction with self-peptide MHC class I. In the absence of prior infection, memory-like or memory phenotype (MP) CD8 T cells can arise from homeostatic cytokine exposure during neonatal lymphopenia. Aside from downstream cytokine signaling, little is known about the regulation of the conversion of naive CD8 T cells to MP CD8 T cells during acute lymphopenia. We have identified a novel negative regulatory role for adhesion and degranulation–promoting adapter protein (ADAP) in CD8 T cell function. We show that in the absence of ADAP, naive CD8 T cells exhibit a diminished response to stimulatory Ag, but an enhanced response to weak agonist-altered peptide ligands. ADAP-deficient mice exhibit more MP CD8 T cells that occur following thymic emigration and are largely T cell intrinsic. Naive ADAP-deficient CD8 T cells are hyperresponsive to lymphopenia in vivo and exhibit enhanced activation of STAT5 and homeostatic Ag-independent proliferation in response to IL-15. Our results indicate that ADAP dampens naive CD8 T cell responses to lymphopenia and IL-15, and they demonstrate a novel Ag-independent function for ADAP in the suppression of MP CD8 T cell generation.