Published in

Trans Tech Publications, Key Engineering Materials, (569-570), p. 49-55, 2013

DOI: 10.4028/www.scientific.net/kem.569-570.49

Links

Tools

Export citation

Search in Google Scholar

Ultrasonically Assisted Drilling: Machining towards Improved Structural Integrity in Carbon/Epoxy Composites

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Red circle
Preprint: archiving forbidden
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Conventional-drilling (CD) methods often initiate discrete damage phenomena such as micro-cracking, matrix burning; delamination and fibre pull-out in difficult-to-machine heterogeneous materials such as carbon fibre-reinforced polymer (CFRP) composites. Ultrasonically assisted drilling (UAD) is a promising machining technique suitable for drilling holes in CFRP composites. UAD has been shown to possess several advantages over CD, including reduction in a thrust force and torque, diminished burr formation at drill exit in ductile materials and an overall improvement in roundness and surface finish of the drilled hole. Recently, our in-house experiments of UAD in CFRP composites demonstrated remarkable reductions in levels of thrust force and torque (average force reductions in excess of 60%) when compared to CD with the same machining parameters. 3D Finite Element (FE) models of CD and UAD techniques for a CFRP laminate were developed using a general-purpose FE software ABAQUS/Explicit and validated using experimental results. The magnitudes of thrust force and torque obtained with FE analysis of UAD are compared with those for CD. The numerical results obtained with the developed FE model were found to be in a good agreement with the experimental data.