Published in

Trans Tech Publications, Key Engineering Materials, (493-494), p. 209-214, 2011

DOI: 10.4028/www.scientific.net/kem.493-494.209

Links

Tools

Export citation

Search in Google Scholar

In Vitro Evaluations of a Mechanically Optimized Calcium Phosphate Cement as a Filler for Bone Repair<sup></sup>

Journal article published in 2011 by Nader Nezafati, Fathollah Moztarzadeh, Masoud Mozafari ORCID
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Red circle
Preprint: archiving forbidden
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Basic drawbacks of calcium phosphate cements (CPCs) are the brittleness and low strength behavior which prohibit their use in many stress-bearing locations, unsupported defects, or reconstruction of thin bones. Recently, to solve these problems, researchers investigated the incorporation of fibers into CPCs to improve their strength. In the present study, various amounts of a highly bioactive glass fiber were incorporated into calcium phosphate bone cement. The obtained results showed that the compressive strength of the set cements without any fibers optimally increased by further addition of the fiber phase. Also, both the work-of-fracture and elastic modulus of the cement were considerably increased after applying the fibers in the cement composition. Herein, with the aim of using the reinforced-CPC as appropriate bone filler, the prepared sample was evaluated in vitro using simulated body fluid (SBF) and osteoblast cells. The samples showed significant enhancement in bioactivity within few days of immersion in SBF solution. Also, in vitro experiments with osteoblast cells indicated an appropriate penetration of the cells, and also the continuous increase in cell aggregation on the samples during the incubation time demonstrated the ability of the reinforced-CPC to support cell growth. Therefore, we concluded that this filler and strong reinforced-CPC may be beneficial to be used as bone fillers in surgical sites that are not freely accessible by open surgery or when using minimally invasive techniques.