Published in

Trans Tech Publications, Key Engineering Materials, (474-476), p. 1736-1739, 2011

DOI: 10.4028/www.scientific.net/kem.474-476.1736

Links

Tools

Export citation

Search in Google Scholar

Non-Cylindrical Fuselage Structural Optimization of BWB Civil Aircraft

Journal article published in 2011 by Yong Jie Zhang, Bin Tuan Wang
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Red circle
Preprint: archiving forbidden
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Blended-Wing-Body (BWB) civil aircraft possesses so light structure, high lift-drag ratio and low fuel burn that it has been an important topic of future civil aircraft. But internal pressure causes large bending stress instead of skin-membrane stress in BWB non-cylindrical fuselage. For 150 seats BWB fuselage, a composite 3-bay fuselage model is analyzed and two improved configurations of braced fuselage derivatives are designed in this paper. By optimization analysis, the optimized non-cylindrical fuselage structures are obtained in low bending stress and deformation condition, and optimized layer thicknesses ratio of composite material are presented. The optimization conclusions are very valuable and applicable for the fuselage structural design of BWB civil aircraft.