Published in

Trans Tech Publications, Key Engineering Materials, (413-414), p. 793-801, 2009

DOI: 10.4028/www.scientific.net/kem.413-414.793

Links

Tools

Export citation

Search in Google Scholar

A Method for Acoustic Emission Source Identification Based on Optimisation

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Red circle
Preprint: archiving forbidden
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

When a metal or composite structure begins to fail, for example due to high cycle fatigue, acoustic emissions caused by the propagation of cracks give rise to bursts of ultrasonic waves travelling through the structure. The health of a structure can be monitored by means of sensors which detect these waves. Acoustic emissions are often generated in experiments by breaking a pencil lead against the surface of the structure in a standardised way but the forces that this imparts are not well understood at present. A Local Interaction Simulation Approach (LISA) algorithm has been implemented to simulate the propagation of ultrasonic waves. This code has been validated against experiments in previous work and has been shown to accurately reproduce the propagation of Lamb waves (including reflections and dispersion etc.) within thin-plate like structures. This paper deals with the use of the LISA code to characterise the forces associated with standard pencil lead breaks. The displacement due to waves emanating from a break is measured and a Differential Evolution (DE) optimisation scheme is used to find the optimal profile of forcing to match the simulation with experiment.