Dissemin is shutting down on January 1st, 2025

Published in

Trans Tech Publications, Defect and Diffusion Forum, (354), p. 85-91, 2014

DOI: 10.4028/www.scientific.net/ddf.354.85

Links

Tools

Export citation

Search in Google Scholar

Competitive Precipitation and Recrystallization in U-7.5Nb-2.5Zr Alloy

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Red circle
Preprint: archiving forbidden
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Abstract. Metallic nuclear fuel plates are nowadays an alternative to the ceramic ones in the sense that the uranium density can be increased at lower enrichment. Higher thermal conductivity is also a key factor favouring such fuels for power reactors. Uranium reacts promptly with oxygen and nitrogen at high temperatures to catastrophic corrosion due to non-protective oxide layers, which imparts hot forming processes. The gamma phase body centred cubic structure can be retained at room temperature by annealing the U-7.5Nb-2.5Zr (wt.%) alloy followed by quenching, where the deformation can be extensive. The resulted highly deformed gamma supersaturated structure is subjected further to competitive recovery/recrystallization and phase precipitation phenomena whose are studied in the work. The U-7.5Nb-2.5Zr alloy was melted into plasma and induction furnaces and afterwards annealed to gamma phase. The normalized alloy was cold rolled and underwent isochronal and isothermal treatments. The microstructure evolution was monitored by optical microscopy, X-ray diffraction analysis and hardness measurements. The results show the precipitation events of α” and α+γ3phases are dominant over recovery in the range 200oC < T < 500oC. Above 500oC the recrystallization is the main process leading to softening and initial Vickers hardness recovery. One refined gamma phase grain structure was obtained (~8.0 μm) after annealing at 700oC for 2.5 hours.