Published in

Trans Tech Publications, Defect and Diffusion Forum, (331), p. 95-112, 2012

DOI: 10.4028/www.scientific.net/ddf.331.95

Links

Tools

Export citation

Search in Google Scholar

Investigations of HAVAR<sup>®</sup> Alloy Using Positrons

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Red circle
Preprint: archiving forbidden
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

A study of irradiation-induced damage in HAVAR® foils was initiated in order to extract the highest proton dose the foils can sustain. The lattice structure of HAVAR® foils in different metallurgic conditions is presented, as well as visible internal structure, measured by Transmission Electron Microscopy (TEM). Positron Annihilation Spectroscopy (PAS) techniques were used to investigate these foils, and another foil that had been irradiated to the maximal proton dose limit, set by the manufacturer to a total charge of 1 mAh (= 3.6 C). PAS techniques included Doppler broadening (DB) measurement in the SPONSOR beam and lifetime (LT) measurements, both carried at Helmholtz-Zentrum Dresden-Rossendorf (HZDR). Both positron spectroscopy methods show clear differences between the investigated foils, with distinguished characteristics for annealed, cold-rolled and irradiated foils. The advantages of using a slow positron beam to study thin foils and defect profiles, over a table-top LT spectrometer, are discussed and demonstrated by the HAVAR® measurements.