Published in

Trans Tech Publications, Defect and Diffusion Forum, (273-276), p. 594-601

DOI: 10.4028/www.scientific.net/ddf.273-276.594

Trans Tech Publications, Defect and Diffusion Forum, p. 594-601

DOI: 10.4028/3-908451-51-5.594

Links

Tools

Export citation

Search in Google Scholar

Wagnerian Scaling Diffusion Kinetics

Journal article published in 2008 by César A. C. Sequeira ORCID
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

The reaction of a metal or alloy with an oxidising environment to form a scale often involves a diffusion process as the rate limiting step. The most protective oxide scales are slow growing, adherent to the substrate, and free of cracks or pores. The growth of these scales is typically by solid state diffusion of metal or oxygen ions that move via point defects in the oxide lattice. In 1933, C. Wagner established a scientific basis for oxidation processes controlled by solid state diffusion, with his celebrated derivation of the parabolic rate constant, which connects scaling rates, diffusion coefficients, point defect concentrations, point defect types, and effect of external parameters, e.g. pO2. These aspects are discussed in this paper. The importance of the Wagnerian theory is to provide a relatively simple model upon which more comprehensive models may be built. For many applications, the rate of degradation of the metal or alloy, owing to oxidation by lattice diffusion would be quite acceptable. Several examples of oxidation processes controlled by vacancy and/or interstitial diffusion will be discussed.