Dissemin is shutting down on January 1st, 2025

Published in

Trans Tech Publications, Advanced Materials Research, (71-73), p. 235-238, 2009

DOI: 10.4028/www.scientific.net/amr.71-73.235

Links

Tools

Export citation

Search in Google Scholar

Elemental Ultrastructure of Bioleaching Bacteria and Archaea Grown on Different Energy Sources

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

The composition and distribution of elements within cells of two species of Fe and S oxidising microbes utilising S, Fe2+ or chalcopyrite (CuFeS2) as an energy source were compared to determine possible sites of oxidation and function of intracellular granules. The bacterium Acidithiobacillus ferrooxidans and the archaeon Metallosphaera hakonensis were examined using energy filtered transmission electron microscopy (EFTEM), TEM energy dispersive X-ray spectroscopy (EDS), Scanning TEM (STEM) and electron energy-loss spectroscopy (EELS). Both species have intracellular granules and we show that these store Fe, S and P. The microbes slowly lost Fe from granules when switched to an Fe-free medium. EELS showed that the Fe in the granules of both species was consistent with Fe3+. Both microbes sometimes contain Cu and Si on their walls and intracellularly. Si concentrations have been shown to affect bioleach performance, so element deposition on the microbial catalyst may be a reason for this. Bands of Fe and S were present close to, or in, the cell membrane of M. hakonensis, as might be expected for the site of oxidation, and S also occurred throughout the cytoplasm. These are the first element maps of M. hakonensis, and these early results demonstrate that advanced characterisation and microanalysis techniques can provide insights into microbial processes involved in bioleaching.