Published in

Trans Tech Publications, Advanced Materials Research, (441), p. 442-446, 2012

DOI: 10.4028/www.scientific.net/amr.441.442

Links

Tools

Export citation

Search in Google Scholar

Construction of Reagentless Biosensor Based on Self-Assembly and Electrodeposition for Determination of Hydrogen Peroxide

Journal article published in 2012 by Dong Jiao Zhao, Yan Hong Chen, Chen Di Tu, Yao Fang Xuan, Feng Na Xi ORCID
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Red circle
Preprint: archiving forbidden
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

A general methodology to prepare reagentless biosensor was developed based on self-assembly and electrodeposition. Redox active inorganic multilayers consisting of copper hexacyanoferrate (CuHCF) multilayers were formed by successive self-assembly. A simple and controllable electrodeposition approach was established for one-step fabrication of chitosan-enzyme layer on CuHCF modified electrode. Horseradish peroxidase was selected as the model enzyme. With CuHCF as the electroactive mediator, the developed reagentless biosensor exhibited a fast amperometric response for the determination of hydrogen peroxide (H2O2). The linear response ranged from 1.4 × 10-5 to 2.0 × 10-4 M with a detection limit of 1.2 × 10-6 M. The biosensor exhibited high reproducibility and long-time storage stability. The proposed methodology could serve as a versatile platform for fabrication of electrochemical biosensors.