Dissemin is shutting down on January 1st, 2025

Published in

Taylor and Francis Group, Bioscience, Biotechnology and Biochemistry, 8(73), p. 1748-1756, 2009

DOI: 10.1271/bbb.90085

Links

Tools

Export citation

Search in Google Scholar

Differential Expression of Sarcoplasmic and Myofibrillar Proteins of Rat Soleus Muscle during Denervation Atrophy

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Red circle
Preprint: archiving forbidden
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Denervation is known to induce skeletal muscle atrophy and fiber-type transitions, the molecular mechanisms of which are poorly understood. To investigate the effect of denervation on skeletal muscle, proteomic analysis was performed to compare denervated soleus muscle with normal soleus muscle. The muscles were fractionated to myofibrillar and sarcoplasmic fractions, which were analysed using two-dimensional gel electrophoresis (2-DE), followed by MALDI-TOF-MS. At least 30 differentially regulated proteins were identified in the sarcoplasmic fractions of normal and denervated soleus muscles. This group included metabolic enzymes, signaling molecules, chaperones, and contractile proteins. We also found two proteins, APOBEC-2 (RNA-editing enzyme) and Gamma-synuclein (breast cancer related protein), which have not been recognized as denervation-induced proteins to date. Our results might prove to be beneficial in elucidating the molecular mechanisms of denervation-induced muscle atrophy.