Dissemin is shutting down on January 1st, 2025

Published in

Elsevier, Neurobiology of Aging, 6(35), p. 1514.e1-1514.e12, 2014

DOI: 10.1016/j.neurobiolaging.2014.01.010

Links

Tools

Export citation

Search in Google Scholar

Assessment of common variability and expression quantitative trait loci for genome-wide associations for progressive supranuclear palsy

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Progressive supranuclear palsy is a rare parkinsonian disorder with characteristic neurofibrillary pathology consisting of hyperphosphorylated tau protein. Common variation defining the microtubule associated protein tau gene (MAPT) H1 haplotype strongly contributes to disease risk. A recent genome-wide association study (GWAS) revealed 3 novel risk loci on chromosomes 1, 2, and 3 that primarily implicate STX6, EIF2AK3, and MOBP, respectively. Genetic associations, however, rarely lead to direct identification of the relevant functional allele. More often, they are in linkage disequilibrium with the causative polymorphism(s) that could be a coding change or affect gene expression regulatory motifs. To identify any such changes, we sequenced all coding exons of those genes directly implicated by the associations in progressive supranuclear palsy cases and analyzed regional gene expression data from control brains to identify expression quantitative trait loci within 1 Mb of the risk loci. Although we did not find any coding variants underlying the associations, GWAS-associated single-nucleotide polymorphisms at these loci are in complete linkage disequilibrium with haplotypes that completely overlap with the respective genes. Although implication of EIF2AK3 and MOBP could not be fully assessed, we show that the GWAS single-nucleotide polymorphism rs1411478 (STX6) is a strong expression quantitative trait locus with significantly lower expression of STX6 in white matter in carriers of the risk allele.