Dissemin is shutting down on January 1st, 2025

Published in

Wiley, Annals of the New York Academy of Sciences, 1(1318), p. 71-80, 2014

DOI: 10.1111/nyas.12464

Links

Tools

Export citation

Search in Google Scholar

Circadian endocrine rhythms: the hypothalamic–pituitary–adrenal axis and its actions

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The stress system effectively restores the internal balance––or homeostasis––of living organisms in the face of random external or internal changes, the stressors. This highly complex system helps organisms to provide a series of neuroendocrine responses to stressors—the stress response—through coordinated activation of the hypothalamic–pituitary–adrenal (HPA) axis and the locus coeruleus/norepinephrine (LC/NE) autonomic nervous systems. In addition to stressors, life is influenced by daily light/dark changes due to the 24-h rotation of Earth. To adjust to these recurrent day/night cycles, the biological clock system employs the heterodimer of transcription factors CLOCK/BMAL1, along with a set of other transcription factors, to regulate the circadian pattern of gene expression. Interestingly, the stress system, through the HPA axis, communicates with the clock system; therefore, any uncoupling or dysregulation could potentially cause several disorders, such as metabolic, autoimmune, and mood disorders. In this review, we discuss the biological function of the two systems, their interactions, and the clinical implications of their dysregulation or uncoupling.