Published in

Elsevier, Journal of Power Sources, 1(195), p. 21-29

DOI: 10.1016/j.jpowsour.2009.07.021

Links

Tools

Export citation

Search in Google Scholar

Radiation-grafted membranes based on polyethylene for direct methanol fuel cells

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Styrenewas grafted onto ultrahigh molecularweight polyethylene powder (UHMWPE) by gammairradiation using a 60Co source. Compression moulded films of selected pre-irradiated styrene-grafted ultrahigh molecular weight polyethylene (UHMWPE-g-PS) were post-sulfonated to the sulfonic acid derivative (UHMWPE-g-PSSA) for use as proton exchange membranes (PEMs). The sulfonation was confirmed by Xray photoelectron spectroscopy (XPS). The melting and flow properties of UHMWPE and UHMWPE-g-PS are conducive to forming homogeneous pore-free membranes. Both the ion conductivity and methanol permeability coefficient increased with degree of grafting, but the grafted membranes showed comparable or higher ion conductivity and lower methanol permeability than Nafion® 117 membrane. One UHMWPE-g-PS membrane was fabricated into a membrane–electrode assembly (MEA) and tested as a single cell direct methanol fuel cell (DMFC). Low membrane cost and acceptable fuel cell performance indicate that UHMWPE-g-PSSA membranes could offer an alternative approach to perfluorosulfonic acidtype membranes for DMFC. ; NRC Pub: Yes ; system details: machine converted author identifier PE to PID, February 2012