Published in

American Meteorological Society, Monthly Weather Review, 7(143), p. 2774-2794, 2015

DOI: 10.1175/mwr-d-14-00250.1

Links

Tools

Export citation

Search in Google Scholar

Radar and Lightning Observations of Deep Moist Convection across Northern Alabama during DC3: 21 May 2012

Journal article published in 2015 by Retha Matthee Mecikalski, Anthony L. Bain, Lawrence D. Carey ORCID
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

Abstract The Deep Convective Clouds and Chemistry (DC3) experiment seeks to understand the kinematic and microphysical controls on the lightning behavior of deep moist convection. This study utilized multiple dual-polarization Doppler radars across northern Alabama to quantify microphysical and kinematic properties and processes that often serve as precursors to lightning, such as the graupel echo volume, graupel mass, and convective updraft volume. The focus here was on one multicellular complex that occurred on 21 May 2012 in northern Alabama during DC3. The graupel echo volume and the graupel mass in the charging region correlated well with the total lightning flash rate (FR), and even better than the updraft volumes and maximum updraft velocities. The flash length scales (LS) and flash areas were generally anticorrelated to the FR, while it was correlated to the nonprecipitation ice volume. More specifically, the presence of smaller flashes was associated with a stronger lower positive charge region caused by larger graupel volumes, stronger updraft volumes, and stronger maximum updraft velocities while larger flashes occurred during lower FRs and were associated with a weakened lower positive charge region in combination with a stronger upper positive charge region, weaker updraft velocities, a smaller graupel volume and mass, and an increase in nonprecipitation ice volume.