Published in

American Association of Immunologists, The Journal of Immunology, 12(187), p. 6318-6326, 2011

DOI: 10.4049/jimmunol.1102057

Links

Tools

Export citation

Search in Google Scholar

SOCS3 deletion in B cells alters cytokine responses and germinal center output

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Abstract B cell behavior is fine-tuned by internal regulatory mechanisms and external cues such as cytokines and chemokines. Suppressor of cytokine signaling 3 (SOCS3) is a key regulator of STAT3-dependent cytokine responses in many cell types and has been reported to inhibit CXCL12-induced retention of immature B cells in the bone marrow. Using mice with SOCS3 exclusively deleted in the B cell lineage (Socs3Δ/Δmb1cre+), we analyzed the role of SOCS3 in the response of these cells to CXCL12 and the STAT3-inducing cytokines IL-6 and IL-21. Our findings refute a B cell-intrinsic role for SOCS3 in B cell development, because SOCS3 deletion in the B lineage did not affect B cell populations in naive mice. SOCS3 was strongly induced in B cells stimulated with IL-21 and in plasma cells exposed to IL-6. Its deletion permitted excessive and prolonged STAT3 signaling following IL-6 stimulation of plasma cells and, in a T cell-dependent immunization model, reduced the number of germinal center B cells formed and altered the production of Ag-specific IgM and IgE. These data demonstrate a novel regulatory signal transduction circuit in plasma cells, providing, to our knowledge, the first evidence of how these long-lived, sessile cells respond to the external signals that mediate their longevity.