Dissemin is shutting down on January 1st, 2025

Published in

American Diabetes Association, Diabetes, 7(57), p. 1834-1841, 2008

DOI: 10.2337/db07-0857

Links

Tools

Export citation

Search in Google Scholar

Hormone-Sensitive Lipase Serine Phosphorylation and Glycerol Exchange Across Skeletal Muscle in Lean and Obese Subjects: Effect of -Adrenergic Stimulation

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

OBJECTIVE—Increased intramuscular triacylglycerol (IMTG) storage is a characteristic of the obese insulin-resistant state. We aimed to investigate whether a blunted fasting or β-adrenergically mediated lipolysis contributes to this increased IMTG storage in obesity. RESEARCH DESIGN AND METHODS—Forearm skeletal muscle lipolysis was investigated in 13 lean and 10 obese men using [2H5]glycerol combined with the measurement of arteriovenous differences before and during β-adrenergic stimulation using the nonselective β-agonist isoprenaline (ISO). Muscle biopsies were taken from the vastus lateralis muscle before and during ISO to investigate hormone-sensitive lipase (HSL) protein expression and serine phosphorylation. RESULTS—Baseline total glycerol release across the forearm was significantly blunted in obese compared with lean subjects (P = 0.045). This was accompanied by lower HSL protein expression (P = 0.004), HSL phosphorylation on PKA sites Ser563 (P = 0.041) and Ser659 (P = 0.09), and HSL phosphorylation on the AMPK site Ser565 (P = 0.007), suggesting a blunted skeletal muscle lipolysis in obesity. Total forearm glycerol uptake during baseline did not differ significantly between groups, whereas higher net fatty acid uptake across the forearm was observed in the obese (P = 0.064). ISO induced an increase in total glycerol release from skeletal muscle, which was not significantly different between groups. Interestingly, this was accompanied by an increase in HSL Ser659 phosphorylation in obese subjects during ISO compared with baseline (P = 0.008). CONCLUSIONS—Obesity is accompanied by impaired fasting glycerol release, lower HSL protein expression, and serine phosphorylation. It remains to be determined whether this is a primary factor or an adaptation to the obese insulin-resistant state.