Published in

American Chemical Society, Journal of Chemical and Engineering Data, 12(60), p. 3545-3553, 2015

DOI: 10.1021/acs.jced.5b00477

Links

Tools

Export citation

Search in Google Scholar

Representation and Validation of Liquid Densities for Pure Compounds and Mixtures

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Orange circle
Postprint: archiving restricted
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Reliable correlation and prediction of liquid densities are important for designing chemical processes at normal and elevated pressures. We have extended a corresponding states model from molecular theory to yield a robust method for quality testing of experimental data that also provides predicted values at unmeasured conditions. The model has been shown to successfully validate and represent the pressure and temperature dependence of liquid densities greater than 1.5 of the critical density for pure compounds, binary mixtures, and ternary mixtures from the triple to critical temperatures at pressures up to 1000 MPa. The systems include the full range of organic compounds, including complex mixtures, and ionic liquids. Minimal data are required for making predictions.The presentation will show the implementation of the method, criteria for its deployment, examples of its application to a wide variety of systems over great ranges of conditions, and considerations of further developments.