Published in

American Chemical Society, Analytical Chemistry, 21(86), p. 10633-10638, 2014

DOI: 10.1021/ac502465s

Links

Tools

Export citation

Search in Google Scholar

Acoustofluidics and Whole-Blood Manipulation in Surface Acoustic Wave Counterflow Devices

This paper was not found in any repository; the policy of its publisher is unknown or unclear.
This paper was not found in any repository; the policy of its publisher is unknown or unclear.

Full text: Unavailable

Green circle
Preprint: archiving allowed
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Orange circle
Postprint: archiving restricted
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

On-chip functional blocks for sample preprocessing are necessary elements for the implementation of fully portable micrototal analysis systems (μTAS). We demonstrate and characterize the microparticle and whole-blood manipulation capabilities of surface acoustic wave (SAW) driven counterflow micropumps. The motion of suspended cells in this system is governed by the two dominant acoustic forces associated with the scattered SAW (of wavelength λf): acoustic-radiation force and acoustic-streaming Stokesian drag force. We show that by reducing the microchannel height (h) beyond a threshold value the balance of these forces is shifted toward the acoustic-radiation force and that this yields control of two different regimes of microparticle dynamics. In the regime dominated by the acoustic radiation force (h ≲ λf), microparticles are collected in the seminodes of the partial standing sound-wave arising from reflections off microchannel walls. This enables the complete separation of plasma and corpuscular components of whole blood in periodical predetermined positions without any prior sample dilution. Conversely, in the regime dominated by acoustic streaming (h ≫ λf), the microbeads follow vortical streamlines in a pattern characterized by three different phases during microchannel filling. This makes it possible to generate a cell-concentration gradient within whole-blood samples, a behavior not previously reported in any acoustic-streaming device. By careful device design, a new class of SAW pumping devices is presented that allows the manipulation and pretreatment of whole-blood samples for portable and integrable biological chips and is compatible with hand-held battery-operated devices.