Dissemin is shutting down on January 1st, 2025

Published in

Portland Press, Essays in Biochemistry, (56), p. 41-52, 2014

DOI: 10.1042/bse0560041

Links

Tools

Export citation

Search in Google Scholar

Predicting aggregation-prone sequences in proteins

Journal article published in 2014 by Greet De Baets, Joost Schymkowitz ORCID, Frederic Rousseau
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Owing to its association with a diverse range of human diseases, the determinants of protein aggregation are studied intensively. It is generally accepted that the effective aggregation tendency of a protein depends on many factors such as folding efficiency towards the native state, thermodynamic stability of that conformation, intrinsic aggregation propensity of the polypeptide sequence and its ability to be recognized by the protein quality control system. The intrinsic aggregation propensity of a polypeptide sequence is related to the presence of short APRs (aggregation-prone regions) that self-associate to form intermolecular β-structured assemblies. These are typically short sequence segments (5–15 amino acids) that display high hydrophobicity, low net charge and a high tendency to form β-structures. As the presence of such APRs is a prerequisite for aggregation, a plethora of methods have been developed to identify APRs in amino acid sequences. In the present chapter, the methodological basis of these approaches is discussed, as well as some practical applications.