Published in

Elsevier, Neuroscience, 3(169), p. 1199-1215, 2010

DOI: 10.1016/j.neuroscience.2010.05.072

Links

Tools

Export citation

Search in Google Scholar

Individual differences in the ability to identify, select and use appropriate frames of reference for perceptuo-motor control.

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The causes of the interindividual differences (IDs) in how we perceive and control spatial orientation are poorly understood. Here, we propose that IDs partly reflect preferred modes of spatial referencing and that these preferences or "styles" are maintained from the level of spatial perception to that of motor control. Two groups of experimental subjects, one with high visual field dependency (FD) and one with marked visual field independency (FI) were identified by the Rod and Frame Test, which identifies relative dependency on a visual frame of reference (VFoR). FD and FI subjects were tasked with standing still in conditions of increasing postural difficulty while visual cues of self-orientation (a visual frame tilted in roll) and self-motion (in stroboscopic illumination) were varied and in darkness to assess visual dependency. Postural stability, overall body orientation and modes of segmental stabilization relative to either external (space) or egocentric (adjacent segments) frames of reference in the roll plane were analysed. We hypothesized that a moderate challenge to balance should enhance subjects' reliance on VFoR, particularly in FD subjects, whereas a substantial challenge should constrain subjects to use a somatic-vestibular based FoR to prevent falling in which case IDs would vanish. The results showed that with increasing difficulty, FD subjects became more unstable and more disoriented shown by larger effects of the tilted visual frame on posture. Furthermore, their preference to coalign body/VFoR coordinate systems lead to greater fixation of the head-trunk articulation and stabilization of the hip in space, whereas the head and trunk remained more stabilized in space with the hip fixed on the leg in FI subjects. These results show that FD subjects have difficulties at identifying and/or adopting a more appropriate FoR based on proprioceptive and vestibular cues to regulate the coalignment of posturo/exocentric FoRs. The FI subjects' resistance in the face of altered VFoR and balance challenge resides in their greater ability to coordinate movement by coaligning body axes with more appropriate FoRs (provided by proprioceptive and vestibular co-variance).