Published in

Springer Nature [academic journals on nature.com], Cell Death and Disease, 8(6), p. e1856-e1856, 2015

DOI: 10.1038/cddis.2015.211

Links

Tools

Export citation

Search in Google Scholar

AK2 deficiency compromises the mitochondrial energy metabolism required for differentiation of human neutrophil and lymphoid lineages

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

AbstractReticular dysgenesis is a human severe combined immunodeficiency that is primarily characterized by profound neutropenia and lymphopenia. The condition is caused by mutations in the adenylate kinase 2 (AK2) gene, resulting in the loss of mitochondrial AK2 protein expression. AK2 regulates the homeostasis of mitochondrial adenine nucleotides (ADP, ATP and AMP) by catalyzing the transfer of high-energy phosphate. Our present results demonstrate that AK2-knocked-down progenitor cells have poor proliferative and survival capacities and are blocked in their differentiation toward lymphoid and granulocyte lineages. We also observed that AK2 deficiency impaired mitochondrial function in general and oxidative phosphorylation in particular – showing that AK2 is critical in the control of energy metabolism. Loss of AK2 disrupts this regulation and leads to a profound block in lymphoid and myeloid cell differentiation.