Published in

Elsevier, International Journal of Mass Spectrometry, (223-224), p. 159-168

DOI: 10.1016/s1387-3806(02)00787-x

Links

Tools

Export citation

Search in Google Scholar

Gas-phase complexes: noncovalent interactions and stereospecificity

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Chiral recognition is a fundamental phenomenon in life sciences based on the enantioselective complexation of a chiral molecule with a chiral selector. The diastereomeric aggregates, formed by complexation, are held together by a different combination of intermolecular forces and are, therefore, endowed with different stability and reactivity. Determination of these forces, which are normally affected in the condensed phase by solvent and supramolecular interactions, requires the generation of the diastereomeric complexes in an isolated state and their kinetic and spectroscopic investigation. This paper concerns enantiodiscrimination of chiral molecules in the gas phase through the application of various ESI-MSn-CID and REMPI-TOF methodologies. The measurement of the fragmentation thresholds of diastereomeric clusters by these techniques allowed to shed light upon the nature and the magnitude of the intrinsic interactions which control their formation and which affect their stability and reactivity. (C) 2002 Elsevier Science B.V. All rights reserved.