Published in

Springer, Plant Molecular Biology, 4-5(79), p. 315-331, 2012

DOI: 10.1007/s11103-012-9914-1

Links

Tools

Export citation

Search in Google Scholar

Transcriptome profiling and methyl homeostasis of an Arabidopsis mutant deficient in S-adenosylhomocysteine hydrolase1 (SAHH1)

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Transcriptome profiling was conducted to detect genes whose expression is significantly changed in an Arabidopsis mutant deficient in S-adenosylhomocysteine hydrolase1 (SAHH1) during early seedling development when mutant phenotypes could be clearly observed. A total of 2,040 differentially expressed genes were identified, representing approximately 6.7 % of the 30,385 DNA oligonucleotide targets on the microarray. Among these differential expressed genes, many were mapped to pathways essential to plant growth and development including those of primary, secondary and hormone metabolisms. A significant proportion of up-regulated genes encoded transposable elements which were mapped to the centromeric and pericentromeric regions of the Arabidopsis chromosomes that were analyzed. A number of down-regulated genes were found to be involved in root hair formation, which might have contributed to the root hair defective phenotype of the mutant. Analysis of genes encoding transposable elements and those associating with root hair development indicated that these genes were highly co-expressed during seedling development. Despite SAHH1 deficiency, the expression of genes encoding methyltransferase remained largely unchanged in the sahh1 mutant. Bisulfite sequencing analysis of the transposable elements and the FWA gene revealed that their sequences in the mutant were deficient of 5-methylcytosines. Analysis of mutant genomic DNA using restriction endonucleases that were unable to cut methylated DNA suggested a genome-wide hypomethylation had occurred in the mutant. These results indicated that SAHH1 plays a critical role in methyl homeostasis, and its deficiency is a major contributing factor to the change of global gene expression, metabolic pathways and activation of transposable elements in the sahh1 mutant. ; peer reviewed: yes ; NRC Pub: yes ; general: