Published in

Wiley Open Access, Microbiology Open, 1(4), p. 100-120, 2014

DOI: 10.1002/mbo3.225

Links

Tools

Export citation

Search in Google Scholar

The evolution of Jen3 proteins and their role in dicarboxylic acid transport inYarrowia

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Jen proteins in yeast are involved in the uptake of mono/dicarboxylic acids. The Jen1 subfamily transports lactate and pyruvate, while the Jen2 subfamily transports fumarate, malate, and succinate. Yarrowia lipolytica has six JEN genes: YALI0B19470g, YALI0C15488g, YALI0C21406g, YALI0D20108g, YALI0D24607g, and YALI0E32901g. Through phylogenetic analyses, we found that these genes represent a new subfamily, Jen3 and that these three Jen subfamilies derivate from three putative ancestral genes. Reverse transcription-PCR. revealed that only four YLJEN genes are expressed and they are upregulated in the presence of lactate, pyruvate, fumarate, malate, and/or succinate, suggesting that they are able to transport these substrates. Analysis of deletion mutant strains revealed that Jen3 subfamily proteins transport fumarate, malate, and succinate. We found evidence that YALI0C15488 encodes the main transporter because its deletion was sufficient to strongly reduce or suppress growth in media containing fumarate, malate, or succinate. It appears that the other YLJEN genes play a minor role, with the exception of YALI0E32901g, which is important for malate uptake. However, the overexpression of each YLJEN gene in the sextuple-deletion mutant strain Delta YLjen1-6 revealed that all six genes are functional and have evolved to transport different substrates with varying degrees of efficacy. In addition, we found that YALI0E32901p transported succinate more efficiently in the presence of lactate or fumarate.